

MIKROSYSTEMY (MEMS) - laboratorium

Ćwiczenie nr 2

Piezorezystancyjny czujnik ciśnienia: pomiar ugięcia membrany krzemowej przy wykorzystaniu światłowodowego miernika odległości

Cel i zakres ćwiczenia:

Celem ćwiczenia jest zbadanie ugięcia membrany krzemowej w funkcji ciśnienia przy wykorzystaniu precyzyjnego światłowodowego miernika odległości.

Podczas pierwszej części ćwiczenia skalibrowany zostanie światłowodowy miernik (czujnik) odległości i określone zostaną optymalne zakresy jego pracy w kontekście pomiaru ugięcia membrany czujnika. W drugiej części ćwiczenia zostaną wykonane pomiary ugięcia krzemowej membrany czujnika ciśnienia w funkcji ciśnienia, z wykorzystaniem wspomnianego miernika odległości. Otrzymane wyniki należy zweryfikować z wartościami uzyskanymi podczas symulacji komputerowej ugięcia membrany w funkcji ciśnienia (ćwiczenie nr 1*).

*dotyczy, jeśli ćwiczenie nr 1 zostało wcześniej wykonane

Opis stanowiska:

- 1. głowica miernika światłowodowego,
- 2. membrana krzemowa czujnika ciśnienia w obudowie polimerowej,
- 3. stolik XYZ z przesuwem mikrometrycznym:
 - pokrętło przesuwu głowicy miernika w osi Z: 3c,
- 4. manometr precyzyjny,
- 5. komputer z oprogramowaniem do akwizycji sygnału miernika.

Rysunek 1. Stanowisko pomiaru ugięcia membrany krzemowej czujnika ciśnienia

UWAGA:

Na stanowisku znajdują się precyzyjne i delikatne elementy. Całkowita wartość stanowiska oszacowana jest na 1500 Euro.

Proszę nie zmieniać nastaw stolika XYZ w osiach X lub Y oraz nie dotykać głowicy czujnika ani membrany krzemowej.

Przebieg ćwiczenia:

UWAGA:

Z chwilą rozpoczęcia pomiarów głowica miernika (czoło światłowodu) może dotykać membrany krzemowej – należy zachować szczególną ostrożność podczas przesuwania głowicy w osi Z, aby nie uszkodzić delikatnej membrany.

Przygotowanie stanowiska:

- 1. Zmniejszyć ciśnienie na membranie do wartości zero w tym celu należy skręcić pokrętło regulacji manometru przeciwnie do ruchu wskazówek zegara upewniając się że obroty realizowane są bez żadnych oporów,
- 2. zamknąć zawór doprowadzający ciśnienie do membrany,
- 3. włączyć komputer i zalogować się na konto Student,
- 4. uruchomić program obsługi czujnika za pomocą skrótu na Pulpicie (Czujnik),
- 5. w zakładce **Com Port** → **Single Channel** wybrać *Open Com Port* poczekać na zmianę statusu kontrolki LED na kolor zielony.

Single Channel 2DMS (dual channel) 10 DMS Rack M	lultiple Com Ports (RS232 or USB) Firmware Update	
Com_Port muDMS-D6 (serial 1668)	 Startup Instructions: Select com port from drop down list. Select RS-232 bps. Default sensor speed is 19.2Kbps. note: muDMS models will ignore BPS setting Click 'Open Com Port'. Wait for Com Status to turn green. All tabs can now be selected. Change Sensor bps: (after com port is open) Select new bps setting. Click 'Change Sensor bps' 	
Distance UOM Save Data to File Delay micron OFF Points S us and Debug Current Process Error Count 0 RST	(sec) 0 File Name aved 0 RST B Samples/sec 10,0	Browse

Kalibracja czujnika:

UWAGA:

Wszelkie manipulacje przy układzie pomiarowym mogą być wykonywane WYŁĄCZNIE za zgodą prowadzącego. Podczas pomiarów nie wprowadzać wibracji w układzie pomiarowym – mogą wpłynąć na uzyskane wyniki.

- 1. ustawić głowicę miernika w odległości 0 od membrany (pod kontrolą prowadzącego),
- 2. Przejść do zakładki New Calibration:

Serial:1668 ch:1 Restart Calibration New Calibration New Calibration based on existing data	Calibration Instructions 1. Select Calibration slot. New calibrations will overwrite old data. 2. Enter a description for this calibration. (24 characters may. 3. Select UOM for the calibration distance that will be entered. 4. Click "Restart Calibration Data' to restart calibration process.(will not change data stored on sensor). 5. Enter current distance between sensor tip and target. 6. Click "Rake Sensor Reading' or press" Enter key to save this calibration point. 7. Repeat steps 5 and 6 for each calibration point. 8. After last calibration point click "Send New Calibration to Sensor'			
New Calibration Slot 10 Description membrana Calibration Point Distance 0 Take Sensor Reading Calibration Points 1 Send New Calibration to Sensor	0,0072 - 0,006 - 0,0066 - 0,0066 - 0,0066 - 0,0062 - 0,006 - 0,006 - -40 -20 0,0056 - -1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1			
Distance UOM Save Data to File	Delay (sec) 0 File Name Points Saved 0 RST 8	Browse		

- a. w zakładce *New Calibration Slot* wpisać wartość 20,
- b. w polu *Description* wpisać unikalną nazwę kalibracji (numer indeksu studenta),
- c. nacisnąć opcję Restart Calibration,
- d. pokrętło mikrometryczne dla osi Z ustawione jest na 0, więc wprowadzić tę wartość w *Calibration Point Distance* i wcisnąć *Take Sensor Reading*,
- e. odsunąć czoło miernika od membrany (kierunek obrotu pokrętła przeciwny do ruchu wskazówek zegara):
 - od 0 μ m do 300 μ m \rightarrow punkt pomiarowy co 10 μ m,

- od 300 μ m do 1200 μ m \rightarrow punkt pomiarowy co 50 μ m.

Dla każdej nowoustawionej wartości, wprowadzić ją w *Calibration Point Distance* i nacisnąć *Take Sensor Readings*. Procedurę tę powtarzać dla zakresu 0-1200 μm.

- f. po zakończeniu kalibracji wybrać Send New Calibration to Sensor,
- g. przejść do zakładki Admin -> Calibration Tables,
- h. w *Calibration Table Display* wybrać z listy wzorzec kalibracji (20) i zapisać we własnym pliku o nazwie <numer indeksu>.txt na Pulpicie w katalogu Mikrosystemy (MEMS), wybierając opcję *Send Calibrations to File*.

Pomiar ugięcia membrany:

UWAGA:

Nie przekraczać maksymalnej wartości ciśnienia roboczego (70 kPa).

1. Przejść do zakładki Multi Trace:

Com Port	Configuration	Multi Configuration	Multi Graph	Multi Trace	Data Stream	New Calibration	Admin
0.6507	1						Load Configuration Save Configuration
0,6506	- 1						
0,6505							
0.6504						<u>)</u>	Serial:1668 ch:1 V Distance Tare Set
0.6503						<u>)</u>	Near Distance 🗸 Inf Peak Set
0,6502	_						
0.6501	_					7	Serial:1668 ch:1 🗸 Distance Tare Set
0,65	5-						Far Distance 🗸 Inf Peak Set
0,6499)-						
0,6498	3-						Serial:1668 cb:1
0,6497	-						Reflection % \(\not\) 0.650302 Basis Set
0,6496	;-					-	Peak Set
0,6495	5-						
0,6494	-						
0,6493	8- <u>1</u>						Inf Tare Max-Min Peak Set ALL Tare Set ALL
0,6492	2- MA						uto Scale ON
0,6491	- <u>N</u> Y						4096 (slow) 🗸
0,649	-						Tare Scale OFF
0.6489)_					I.	Clear Graph
	Distance I	IOM Save Data to F	ile	_	1		
	micron	OFF	Delay Points Sa	(sec) 0 aved 0	File N	ame	Browse
Status and	d Debug Current	Process	Error Count	Samples/	'sec		

- a) włączyć manometr (Enter) i odblokować zawory doprowadzające ciśnienie,
- b) wybrać podgląd wartości Far Distance i Near Distance (zapytać prowadzącego),
- c) pomiar ugięcia membrany wykonać dla zakresu ciśnienia od 0 kPa do 70 kPa (co 5 kPa) dla odległości czoła światłowodu: 100 μm, 120 μm, 150 μm, 170 μm, 200 μm, 250 μm, 300 μm, 500 μm, 700 μm, 900 μm, 1100 μm (11 punktów pomiarowych). Pomiary wykonywać według procedury:
 - zredukować wartość ciśnienia do 0 kPa,
 - ustawić odpowiednią wartość odległości na pokrętle mikrometrycznym,
 - zwiększać wartość ciśnienia, za każdym razem notując wartości Far/Near Distance,
- d) po zakończeniu pomiarów, przejrzeć zawartość pliku kalibracji (poprosić prowadzącego), a następnie zgrać go w celu późniejszej analizy wyników.

Opracowanie wyników i materiały uzupełniające:

- 1. Uzyskane wyniki kalibracji i pomiarów przedstawić w tabeli w formie załączników.
- 2. Wyznaczyć wartości odkształcenia membrany krzemowej D wg. wzoru (1) i przedstawić je w formie tabeli:

Rysunek 1. Pomiar ugięcia membrany, gdzie: a) D₀ to odległość do powierzchni membrany zmierzona przy ciśnieniu względnym 0 kPa, b) D₁ to odległość zmierzona dla ciśnienia względnego > 0 kPa.

$$\mathbf{D} = \mathbf{D}_0 - \mathbf{D}_1 \left[\boldsymbol{\mu} \mathbf{m} \right] \tag{1}$$

- 3. Wykreślić zależność ugięcia membrany od zadanej wartości ciśnienia, gdzie parametrem jest odległość czoła światłowodu od powierzchni membrany.
- 4. Na podstawie wyników z pliku kalibracyjnego, wykreślić krzywą kalibracyjną (porównać z typową charakterystyką miernika odległości przedstawioną w dostępnej na stanowisku instrukcji obsługi).
- 5. Porównać otrzymaną krzywą kalibracyjną z uzyskanymi wcześniej wynikami pomiarów:

- zaznaczyć na krzywej kalibracyjnej **"bliski" zakres pomiarowy**, gdzie natężenie światła docierającego do miernika rośnie wraz ze wzrostem odległości czoła światłowodu od powierzchni membrany

- zaznaczyć na krzywej kalibracyjnej **"daleki" zakres pomiarowy**, gdzie natężenie światła maleje wraz ze wzrostem odległości, a także **zakres przejściowy** pomiędzy dwoma zakresami pomiarowymi miernika,

- wyjaśnić, dlaczego w zakresie przejściowym miernik wskazywał wartość "0",
- oblicz czułość miernika dla wszystkich trzech zakresów (wzór 2),

- skomentować wartość czułości w kontekście uzyskanych wyników pomiaru ugięcia membrany dla kolejnych odległości między membraną a czołem światłowodu,

- wskazać optymalny zakres pomiarowy dla zastosowanego w ćwiczeniu układu.

Czułość czujnika S charakteryzuje iloraz przyrostu odpowiedzi czujnika przez odpowiadający mu przyrost sygnału wejściowego. Obliczeń czułości czujnika należy dokonać na liniowych odcinkach charakterystyki wg. wzoru:

$$S=\Delta Y/\Delta X$$

(2)

Zagadnienia do samodzielnego przygotowania:

- 1. Zapoznać się z dokumentacją techniczną światłowodowego miernika odległości muDMS-D6 (Philtec).
- 2. Światłowodowy pomiar odległości wyjaśnić zasadę pomiaru.
- 3. Wyjaśnić budowę światłowodowego miernika odległości, bazując na podstawowych elementach optycznych i optoelektronicznych.
- 4. Narysować i opisać krzywe kalibracyjne typowych światłowodowych mierników odległości. Opisać zakresy pracy takich mierników.
- 5. Opisać zależność między podstawowymi wymiarami konstrukcyjnymi membrany krzemowej (grubość, powierzchnia, wzmocnienia) a zakresem dopuszczalnych ciśnień oraz czułością pomiaru ciśnienia.